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Introduction to Schur polynomials

Definition of Schur measure and process

Dynamics which preserve class of Schur measure / process

Connections to TASEP and LPP

Schur measure determinantal point process kernel

Limit theorem for TASEP

Lecture 2

   Lecture 2 Page 2    



Partitions

Partition:                           weakly decreasing with  

(e.g.                                          )

             length                           and size 

Interlacing:            if                     for all 

Gelfand-Tsetlin schemes:                            with 

(e.g.                      )

Ex: Show GT schemes are same 

as semi-standard Young tableaux.
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Schur polynomials

Schur symmetric polynomial (Issai Schur, 1900)

Ex: Prove that these are symmetric polynomials. Compute 

Multivariate symmetric polynomials which form linear basis of 

space of symmetric polynomials. Important role in representation 

theory. Have many nice properties (some of which we will use).

Vandermonde 

determinant

   Lecture 2 Page 4    



Branching rule

Iterating the branching rule gives the combinatorial formula

All GT-schemes with top line

Thus, for                  we have                        (positivity)

Ex: Prove branching rule. Compute the number of GT-schemes with top row   . 

Use this to rederive yesterday's result on the volume of interlacing triangular arrays.
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Schur measure [Okounkov, 2001]

A probability measure on partitions                  given by

where                      and                 are positive parameters. 

Cauchy-Littlewood identity evaluates partition function as

Ex: Prove above identity using the Cauchy determinant identity.

Discrete (X,Y)-parameter generalization of GUE eigenvalue measure
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Schur process [Okounkov-Reshetikhin, 2001]

A probability measure on GT-schemes                   given by

Fact: Level k marginal distributed as 

Discrete (X,Y)-parameter generalization of GUE corner process
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Gibbs property

If all          then levels N-1,…,1 are marginally distributed 

uniformly over GT-schemes with top level 

More generally, define stochastic links

Schur process is distributed as the trajectory a Markov chain with 

these transition matrices, initially distributed as Schur measure
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Discrete time/space DBM type dynamics

Markov chain on level N which preserves class of Schur measure:

          -> Geometric random walks killed outside Weyl chamber

          -> Conditioned to survive (via Doob h-transform)

Fact: The push-forward of            under        is     
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Intertwining Markov dynamics
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Building multivariate Markov dynamics 

Due to [Diaconis-Fill, 1990, Borodin-Ferrari, 2008]

Sequentially update from bottom to top via

Markov chain preserves class of Schur processes

            pushes-forward via      to  

Ex: Prove this fact.
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Here is a continuous time dynamic corresponding to 

and the limit                   and taking       steps of the chain.

GT-scheme Schur process distributed as                        

Block-push (2+1)d dynamic [Borodin-Ferrari, 2008]

  simulation

Each particle jumps right at rate 1. Particles are blocked by 

those on the lower level, and push those on the higher level.
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                                                                                       Discrete DBM

                           TASEP                                     push-TASEP

Initial data (e.g. step) corresponds to marginals of Schur processes

A further limit (taking time large and rescaling diffusively) leads 

to Warren's dynamics and the GUE corner process.

(1+1)d marginals
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(2+1)d RS(K) dynamics

Ex: Prove that the right-edge (push-TASEP) marginal matches the following process in t:

This is part of the RS(K) correspondence which involves 

maximizing over multiple non-intersecting paths. Under RS(K) 

above last passage percolation model leads same Schur process.

BUT: as time changes, the (2+1)d RS(K) dynamics are different!
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Determinantal point processes

Both Schur measure and process have the structure of 

determinantal point processes with explicit correlation kernels.

A point process            is determinantal if for all k, and 

Show that for any set          the following holds:

Ex: Show that correlation functions characterize a point process.
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Schur measures determinantal kernel

[Okounkov, 2001] For                   distributed as 

the point process                                 is determinantal with kernel

Other proofs in [Johansson, 2001, Borodin-Rains, 2005].

We will sketch an approach suggested in [Borodin-Corwin, 2011].
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Eigenrelations for q-difference operators

For any q, define q-shift operator                                                  

Notice that     is an eigenfunction of       with eigenvalue

     q-difference operator:

Schur polynomials eigenfunctions:

Ex: Prove this relation.
   Lecture 2 Page 17    



Computing expectations

Lets focus on first q-difference operator. It can be written as

Recalling                             , the following recipe allows us to 

compute certain expectations

   Lecture 2 Page 18    



Integral formulas for expectations

We can encode application of first q-difference operator on 

multiplicative functions                             as contour integrals

But    was arbitrary. Can extract one-point correlation function

Can appeal to higher q-difference operators to prove theorem.
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Application: TASEP fluctuations

[Johansson, 1999]

One proof follows by taking steepest descent asymptotics of 

Fredholm determinant provided by connection to Schur measure.   

Naturally leads to Fredholm determinant formula for 
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Lecture 2 summary

Schur measure and process generalize GUE corners process

Diaconis-Fill type dynamics provide link to TASEP (like Warren's)

Determinantal structure leads to explicit formulas /asymptotics 

Lecture 3 preview

Macdonald measure and process generalizes Schur process

Structure of Macdonald polynomials leads to integrable particle 

systems (e.g. q-TASEP, stochastic heat and KPZ equations…)



Eigenrelations satisfied by Macdonald polynomials leads to explicit 

formulas for expectations of observables and certain asymptotics
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